The Facile Syntheses of 2,3-Dihydro-1*H*-1,5-benzodiazepines and Their Ribofuranosides

Renuka Jain, Tripti Yadav, Manoj Kumar, and Ashok K. Yadav*

Department of Chemistry, University of Rajasthan, Jaipur 302055, Rajasthan, India *E-mail: drakyada@yahoo.co.in Received May 8, 2009 DOI 10.1002/ihet.365

Published online 3 May 2010 in Wiley InterScience (www.interscience.wiley.com).

The facile syntheses of 2,3-dihydro-1H-benzodiazepines containing heterocyclic moieties and their ribofuranosides have been accomplished in ionic liquids at ambient temperature. The characterization of all these compounds has been done unambiguously by IR, ¹H NMR, ¹³C NMR, GC-MS spectroscopy, and elemental analysis.

J. Heterocyclic Chem., 47, 603 (2010).

INTRODUCTION

The 1,5-Benzodiazepines have attracted tremendous attention due to their diversified medicinal properties [1-4], e.g. analgesic, hypnotic, sedative, antianxiety, anticonvulsant, antidepressant, and anti-inflammatory activities. These derivatives have also been used in viral infections and cardiovasulcar disorders [5]. Commercial applications of this heterocyclic system as dyes for acrylic fibres and in photography have also been reported [6].

These derivatives also act as key intermediates for the synthesis of fused ring derivatives [7], viz., triazolo-, oxadiazolo-, oxazino-, furano-, and pyrido- benzodiazepines.

A survey of the literature reveals that the synthesis of 1,5-benzodiazepines involves the condensation of ophenylenediamine with β -haloketones [8], α , β -unsaturated carbonyl compounds [9] or ketones in the presence of BF₃-etherate [10], polyphosphoric acid or SiO₂ [11], NaBH₄ [12], MgO-POCl₃ [13], InBr₃ [14], InCl₃ [15], ionic liquids [16], Amberlyst [17] or zinc montmorillonite [18], etc.

The chemistry of nucleosides has been an active area of research in academia and in industry as it has demonstrated significant importance in cancer and viral therapy [19]. Also, protected nucleosides serve as building blocks for the synthesis of oligonucleotides, which has been used as probes for diagnostic purposes [20] and in antisense therapeutics [21]. The antisense oligonucleotides and siRNA have been extensively employed in selective inhibition of gene expression [22]. To our knowledge, only scanty information is available in regard to the synthesis of 1,5-benzodiazepine derivatives containing heterocyclic moieties, their spiro derivatives [23] and nucleosides. Furthermore, the reported methods are associated with several drawbacks, such as expensive reagents, drastic reaction conditions, extended reaction times, formation of the side products, unsatisfactory yields, complex experimental procedures, and involving the use of environmentally black listed solvents, e.g. *N*,*N*-dimethylformamide, *N*-methylpyrrolidine, *etc*.

In view of our continuous interest in the synthesis of nucleosides [24] and the only report on ionic liquid promoted lipase catalysed synthesis of nucleosides [25], we have developed a facile synthesis of 2,3-dihydro-1H-1,5-benzodiazepines containing heterocyclic moieties and their spiro derivatives at ambient temperature in environmentally benign ionic liquid (IL). These derivatives could be subsequently transformed to their ribofuranosides in the same pot under mild conditions.

RESULTS AND DISCUSSION

In our strategy, we first attempted the synthesis of 2,3-dihydro-1H-1,5-benzodiazepines containing heterocyclic moieties/spiro derivatives from the reaction o-phenylenediamine and an heterocyclic between ketone(s) in an IL, viz. 1,3-di-n-butylimidazolium bromide [BBIM]Br, 1,3-di-n-butylimidazolium tetrafluoroborate [BBIM]BF₄, 1,3-di-n-butylimidazolium hexafluorophosphate [BBIM]PF₆, 1-methoxyethyl-3-methylimidazolium trifluoroacetate [MOEMIM]TFA, and 1methoxyethyl-3-methylimidazolium mesylates [MOE-MIM]Ms at ambient temperature ($28 \pm 2^{\circ}$). The reaction afforded 2,3-dihydro-1*H*-1,5-benzodiazepine containing heterocyclic moieties or their spiro derivatives in excellent yields (Table 1).

The chracterization of the compounds **3a-k** have been carried out by IR, ¹H NMR, ¹³C NMR, GC-MS spectroscopy and elemental analysis.

A plausible mechanism of the reaction appears to involve nucleophilic attack of *o*-phenylenediamine on the carbonyl carbon of the heterocyclic ketone to generate diaminoalcohol followed by loss of water to afford diimine intermediate **A**. The latter may undergo 1,3hydrogen shift to yield isomeric imine-enamine intermediate **B**, which on cyclization affords 2,3-dihydro-1*H*-1,5-benzodiazepines/spiro compounds *via* dipolar intermediate (Scheme 1).

To devise our goal of designing a one pot synthesis of 2,3-dihydro-1*H*-1,5-benzodiazepiene ribofuranosides **4a-k**, the solubility of the compounds **3a** and **3j** was checked in ionic liquids by dissolving till saturation in 1 mL of IL. These data are summarized in Table 2.

The data presented in Table 2 suggest that the compounds **3a** and **3j** show better solubility in [MOE-MIM]Ms, [MOEMIM]TFA, which may therefore be used for ribofuranosylation. This may be attributed due to the ability of oxygenated cation to hydrogen bond with -NH of the 1,5-benzodiazepine.

In a one-pot synthesis of 1,5-benzodiazepine ribofuranosides, *o*-phenylenediame (entry 1 Table 1) was first reacted with heterocyclic ketone **2a** in [MOEMIM]TFA, the progress of the reaction being monitored by TLC. After completion of the reaction, the sugar, viz., β -Dribofuranose-1-bromo-2,3,5-tribenzoate was added and the contents were further stirred. After workup compound **4a** was obtained in 92% yield. On carrying out this reaction in [MOEMIM]Ms, **4a** was obtained in 80% yield (Scheme 2).

These investigations suggest that [MOEMIM]TFA is a better protocol for the synthesis of compounds 4a, which is in consonance with the earlier report [26]. Same method was employed for the synthesis of ribofuranosides 4a-k.

The compounds **4a-k** have been characterized on the basis of IR, ¹H NMR, ¹³C NMR, GC-MS spectroscopy, and elemental analysis.

We also checked the recyclability of the ionic liquid [MOEMIM]TFA for one pot synthesis of compound 4a from *o*-phenylenediameine, and heterocyclic ketone 2a as described earlier. The results of the recyclability are shown in Table 3, which suggest that the yield of the compound 4a decreases by 5.6 and 10%, respectively in first and second recycling of [MOEMIM]TFA. However, in the third cycle, the decrease in yield was significant.

SUMMARY

In summary, a facile one pot synthesis of 2,3-dihydro-1*H*-1,5-benzodiazepine derivatives containing heterocyclic moieties, their spiro derivatives and their ribofuranosides have been developed at ambient temperature in environmentally benign ionic liquids(s). [MOE-MIM]TFA was found to be a better solvent for this purpose. The simplicity of the procedure, easy recovery and reuse of the reaction media *viz*. ionic liquid make this methodology a convenient, efficient, economic, and attractive.

EXPERIMENTAL

Melting points were determined in open capillary tubes and are uncorrected. IR spectra were recorded on a SHIMADZU FT-IR spectrometer using KBr pellets. ¹H NMR spectra were recorded on a JEOL AL-300 MHz NMR spectrometer in CDCl₃ using TMS as an internal standard (chemical shift in δ ppm). ¹³C NMR spectra were recorded on a JEOL AL-75 MHz NMR spectrometer in CDCl₃ using TMS as an internal standard. Mass spectra were measured on HP 5890 GC-MS (70eV.EI). The purity of the products was checked by TLC using silica gel 60F 254 aluminium sheets and visualization was accomplished by iodine/UV light. Ionic liquids were prepared by reported methods [27,28]. All reagents were used as obtained commercially.

Synthesis of 2,3-dihydro-1H-1,5-benzodiazepines (3a-k). o-Phenylenediamine (0.005 mol) and heterocyclic ketone (0.010 mol) were added to IL (0.015 mol). The contents were stirred magnetically at room temperature ($28 \pm 2^{\circ}$ C). The progress of the reaction was monitored by TLC using silica gel 60F 254 aluminum sheet in pet.ether/EtOAc 7:3. Upon completion of the reaction, water (20 mL) was added to it. The organic compound was then extracted with EtOAc (2 × 15 mL). The combined organic layer was distilled under reduced pressure (10 mmHg) at 50°C to afford compounds **3a-k**. All these products were further purified by column chromatography on silica gel 60–120 mesh by eluting with pet.ether-EtOAc (7:3).

2,4-Di(2'-Furyl)-2-methyl-2,3-dihydro-1H-1,5-benzodiazepine (3a). Solid, mp = $152-153^{\circ}$ C; $R_{\rm f}$ = 0.45 (pet.ether ethyl acetate = 7:3); ¹H NMR δ : 1.69 (s, 3H, --CH₃), 2.90 (d, J = 13.2 Hz, 1H, methylene), 3.05 (d, J = 13.2 Hz, 1H methylene), 3.40 (s, 1H, NH), 6.46 (d, J = 2.2 Hz, 1H, Furyl), 6.64 (d, J = 3.0 Hz, 1H, Furyl), 6.90-7.03 (m, 2H, 1H furyl and 1H phenyl), 7.10-7.15 (m, 1H, phenyl), 7.28 (d, J = 2.8 Hz, 1H, phenyl), 7.40 (d, J = 3.0 Hz, 1H, Furyl), 7.51 (d, J= 1.4 Hz, 1H, furyl), 7.60 (d, J = 3.0 Hz, 1H, Furyl), 7.78 (d, J = 1.4 Hz, 1H, Furyl); ¹³C NMR δ : 28.80, 39.60, 71.40, 105.10, 110.62, 112.10, 113.72, 122.55, 123.15, 126.50, 128.45, 137.70, 141.30, 142.00, 146.10, 154.10, 158.50, 159.90; IR (KBr cm⁻¹) v: 3320, 3040, 2970, 1640; GC-MS : M⁺, 292.

2,4-Di(2'-thiophenyl)-2-methyl-2,3-dihydro-1H,1,5-benzodiazepine (3b). Solid, mp = 104–105°C; $R_{\rm f} = 0.48$ (pet.ether - ethyl acetate = 7:3); ¹H NMR δ : 1.80 (s, 3H, CH₃), 2.95 (d, J = 13.8 Hz, 1H, methylene), 3.05 (d, J = 13.8 Hz, 1H, methylene), 3.60 (s, 1H, NH), 6.60–6.70 (m, 2H, 1H thiophenyl

The Facile Syntheses of 2,3-Dihydro-1*H*-1,5-benzodiazepines and Their Ribofuranosides

Table 1

and 1H phenyl), 6.75 (dd, J = 1.4 Hz, 1H, Phenyl), 6.80–6.85 (m, 2H, 1H thiophenyl and 1H phenyl), 6.92–6.98 (m, 2H, 1H thiophenyl and 1H phenyl), 7.05 (dd, J = 1.3 Hz, 1H, thio-

phenyl), 7.29 (d, J = 1.5 Hz, 1H, thiophenyl), 7.37 (d, J = 3.0 Hz, 1H, Thiophenyl); ¹³C NMR δ : 31.10, 44.82, 73.10, 106.45, 111.20, 113.80, 114.60, 122.10, 124.20, 127.78,

Synthesis of 2,3-dihydro-1 <i>H</i> -1,5-benzodiazepines.											
				\mathbb{R}^{1}	NH2 + NH2	2 R ³ CH ₃	Ionic liquid	R ²	N N H H H		
					1	2		3	СН ₃ 3		
		0	PD					Yield of	1,5-bezodiaz	epines (%)/time (h	l)
Entry	y Compd	. R ¹	\mathbb{R}^2	R ³	Pro	oduct	[BBIM]Br	[BBIM]BF ₄	[BBIM]PF ₆	[MOEMIM]TFA	[MOEMIM]Ms
1	3a	Н	Н			H ₃ C O	85/7.5	87/6.5	90/5.5	92/4.5	80/4.5
2	3b	Н	Н	K S		H _{3C} S	80/7.0	85/6.0	87/5.5	90/5.0	90/5.5
3	3c	Н	Н				78/6.5	83/6.0	85/5.5	94/5.0	90/5.5
4	3d	Н	Н			N H ₃ C N	80/7.0	82/6.5	86/6.0	92/5.0	88/5.5
5	3e	Н	Н			H ₃ C N	82/7.0	85/6.5	85/6.0	94/5.0	90/5.5
6	3f	Н	Cl		CI O	N N H H ₃ C N	78/7.0	83/6.5	86/6.0	90/5.0	88/5.5
7	3g	Н	NO ₂		0 ₂ N.	N N H ₃ C	73/7.0	79/6.5	82/6.0	85/5.0	80/5.5

(Continued)

		C)PD				Yield of	1,5-bezodiaz	epines (%)/time (h)
Entry	Compd	. R ¹	R^2	R ³	Product	[BBIM]Br	[BBIM]BF ₄	[BBIM]PF ₆	[MOEMIM]TFA	[MOEMIM]Ms
8	3h	Cl	Cl			63/7.5	69/7.0	72/6.5	79/5.5	75/6.5
9	3i	Н	NO ₂			67/7.5	72/7.0	75/6.5	80/5.5	76/6.5
10	3j	Н	Cl			75/7.0	78/6.5	80/6.5	82/5.5	76/6.0
11	3k	Н	Н	Ph N Me	Ph N Me Me N Me	75/7.5	77/6.5	82/6.5	90/5.0	85/6.0

Table 1 (Continued)

128.20, 128.50, 130.48, 137.50, 141.40, 147.95, 153.78, 162.80; IR (KBr, $\rm cm^{-1})~\nu$: 3325, 3040, 2970, 1625; GC-MS : $\rm M^+,$ 324.

2,4-Di(2'-pyridyl)-2-methyl-2,3-dihydro-1H-1,5-benzodiazepine (3c). Solid, mp = 162° C; $R_{\rm f} = 0.46$ (pet.ether - ethyl acetate = 7:3); ¹H NMR δ : 1.82 (s, 3H, CH₃), 2.91 (d, J = 13.2Hz, 1H, methylene), 3.05 (d, J = 13.2 Hz, 1H, Mehtylene), 3.40 (s, 1H, NH), 6.80 (m, 1H, phenyl), 6.90 (m, 1H, phenyl), 6.95 (d, J = 3.0 Hz, 1H, phenyl), 7.24 (dd, J = 3.4 Hz, 1H, pyridyl), 7.46 (d, J = 3.0 Hz, 1H, phenyl), 7.55 (d, J = 3.4Hz, 1H, pyridyl), 7.66 (dd, J = 3.4 Hz, 1H, pyridyl), 7.83 (t, J = 4.9 Hz, 1H, pyridyl), 7.86 (dd, J = 7.0 Hz, 1H, pyridyl), 8.63 (d, J = 7.2 Hz, 1H, pyridyl), 8.68(d, J = 4.6 Hz, 1H, pyridyl), 8.80 (d, J = 4.6 Hz, 1H, pyridyl); ¹³C NMR δ : 31.15, 37.05, 73.25, 119.65, 120.68, 121.30, 123.95, 124.08, 126.56, 128.55, 128.80, 135.90, 136.00, 138.90, 139.15, 147.80, 148.26, 156.30, 165.15, 167.20; IR (KBr, cm⁻¹) v : 3315, 3015, 2970, 1635; GC-MS : M⁺, 314.

2,4-Di(3'-pyridyl)-2-methyl-2,3-dihydro-1H-1,5-benzodiazepine (3d). Solid, mp = 168°C; $R_{\rm f}$ = 0.42 (pet.ether - ethylacetate = 7:3); ¹H NMR δ : 1.82 (s, 3H, CH₃), 2.98 (d, J = 13.2 Hz, 1H, methylene), 3.08 (d, J = 13.2 Hz, 1H, methylene), 3.50 (s, 1H, NH) 6.85–6.90 (m, 1H, phenyl), 6.95–6.98 (m, 1H, phenyl), 7.30 (t, J = 3.6 Hz, 1H, pyridyl), 7.35 (d, J = 1.8 Hz, 1H, phenyl), 7.40 (dd, J = 3.0 Hz, 1H, phenyl), 7.50 (s, 1H, pyridyl), 7.55 (d, J = 1.8 Hz, 1H, pyridyl), 7.80 (t, J = 3.4 Hz, 1H, pyridyl), 7.96 (s, 1H, pyridyl), 8.20 (d, J = 7.0 Hz, 1H, pyridyl), 8.71 (d, J = 1.8 Hz, 1H, pyridyl), 8.80 (d, J = 1.8 Hz, 1H pyridyl); ¹³C NMR δ : 29.70, 42.70, 72.50, 121.45, 122.05, 122.95, 127.00, 128.80, 133.30, 133.45, 133.92, 134.10, 137.28, 139.40, 142.15, 147.35, 148.40, 150.45, 161.42, 164.60; IR (KBr, cm⁻¹) v : 3320, 3020, 2980, 1640; GC-MS : M⁺, 314.

2,4-Di(4'-pyridyl)-2-methyl-2,3-dihydro-1H-1,5-benzodiazepine (3e). Solid, mp = 170°C; $R_f = 0.44$ (pet.ether - ethyl acetate = 7:3); ¹H NMR δ : 1.89 (s, 3H, CH₃), 2.90 (d, J = 13.4 Hz, 1H, methylene), 3.17 (d, J = 13.4 Hz, 1H, methylene), 3.81 (s, 1H, NH), 6.90 (dd, J = 1.3 Hz, 1H, phenyl), 6.98 (dd, J = 1.3 Hz, 1H, phenyl), 7.13 (d, J = 1.3 Hz, 1H, phenyl), 7.25 (d, J = 1.3 Hz, 1H, phenyl), 7.30 (d, J = 1.75 Hz, 1H, pyridyl), 7.48 (d, J = 2.10 Hz, 1H, pyridyl), 7.75 (d, J = 2.4Hz, 1H, pyridyl), 7.98 (d, J = 1.5 Hz, 1H, pyridyl), 8.10 (d, J = 1.5 Hz, 1H, pyridyl), 8.28 (d, J = 1.4 Hz, 1H, pyridyl), 8.70 (d, J = 1.75 Hz, 1H, pyridyl), 8.80 (d, J = 2.15 Hz, 1H, pyridyl); ¹³C NMR δ : 29.76, 42.80, 72.60, 121.40, 122.07, 122.90, 127.02, 128.75, 133.20, 133.40, 133.85, 134.10. 137.25, 139.40, 147.30, 148.10, 148.30, 150.40, 161.45, 164.60; IR (KBr, cm⁻¹) v: 3310, 3010, 2965, 1630; GC-MS : M⁺, 314.

7-Chloro-2,4-di(2'*-pyridyl*)*-2-methyl-2,3-dihydro-1H-1,5-benzodiazepine (3f).* Solid, mp = 161° C; $R_{\rm f} = 0.48$ (pet.ether ethyl acetate = 7:3); ¹H NMR δ : 1.82 (s, 3H, CH₃), 2.83 (d, J = 13.0 Hz, 1H, methylene), 3.24 (d, J = 13.0 Hz, 1H, methylene),

The Facile Syntheses of 2,3-Dihydro-1*H*-1,5-benzodiazepines and Their Ribofuranosides

Scheme 1

 Table 2

 Solubility analysis of compounds in ionic liquids (mg mL⁻¹), room temperature (22°C).

			Solubility (mg ml	L^{-1})	
Compounds	[BBIM]Br	[BBIM]BF ₄	[BBIM]PF ₆	[MOEMIM]TFA	[MOEMIM]MS
3a	40	120	290	390	370
3ј	75	115	275	400	380

3.76 (s, 1H, NH), 7.02–7.06 (m, 2H, 1H pyridyl and 1H phenyl), 7.15–7.20 (m, 2H, 1H pyridyl and 1H phenyl), 7.28–7.30 (m, 2H, 1H pyridyl and 1H phenyl), 7.50 (t, J = 2.8 Hz, 1H, pyridyl), 7.86 (t, J = 1.2 Hz, 1H, pyridyl), 8.60 (dd, J = 1.65 Hz, 1H, pyridyl), 8.68 (d, J = 1.8 Hz, 1H, pyridyl), 8.70 (d, J = 2.10Hz, 1, pyridyl); ¹³C NMR δ : 31.28, 37.56, 73.50, 121.97, 122.46, 122.73, 124.38, 126.45, 127.14, 128.02, 130.45, 131.67, 136.46, 137.68, 140.21, 148.10, 148.31, 148.49, 156.31, 167.04; IR (KBr, cm⁻¹) v : 3280, 3050, 2970, 1620; GC-MS : M⁺, 349.

7-Nitro-2,4-di(2'*-pyridyl*)*-2-methyl-2,3-dihydro-1H-1,5-benzodiazepine* (*3g*). Deep red solid, mp = 141°C; $R_f = 0.42$ (pet.ether - ethyl acetate = 7:3); ¹H NMR δ : 1.88 (s, 3H, CH₃), 2.92 (d, J = 13.8 Hz, 1H, methylene), 3.26 (d, J = 13.8 Hz, 1H, methylene), 3.28 (s, 1H, NH), 6.42 (s, 1H, phenyl), 6.56 (d, J = 1.8 Hz, 1H, phenyl), 7.10 (d, J = 1.8 Hz, 1H, phenyl), 7.25 (dd, J = 1.3 Hz, 1H, pyridyl), 7.30–7.36 (m, 2H, pyridyl), 7.55 (d, J = 1.9 Hz, 1H, pyridyl), 7.61 (dd, J = 1.3 Hz, 1H, pyridyl), 8.65 (d, J = 1.9 Hz, 1H, pyridyl), 9.65 (d, J = 1.9 Hz, 1H, pyridyl), 8.65 (d, J = 1.9 Hz, 1H, pyridyl), 9.65 (d, J = 1.9 Hz, 1H, pyrid 8.70 (d, J = 2.2 Hz, 1H, pyridyl); ¹³C NMR δ : 32.10, 36.50, 75.10, 114.40, 117.20, 122.52, 124.10, 124.20, 125.90, 127.20, 129.10, 130.88, 135.70, 136.10, 138.40, 149.08, 149.90, 152.60, 163.38, 164.60; IR (KBr, cm⁻¹) v : 3325, 3140, 2940, 1620. Anal. Calcd for C₂₀H₁₇N₅O₂ : C, 66.82; H, 4.77; N, 19.49. Found : C, 66.85; H, 4.80; N, 19.47.

7,8-Dichloro-2,4-di(2'-pyridyl)-2-methyl-2,3-dihydro-1H-1,5benzodiazepine (3h). Deep brown solid, mp = 110°C; R_f = 0.46 (pet.ether - ethyl acetate = 7:3); ¹H NMR δ: 1.53 (s, 3H, –CH₃), 2.90 (d, J = 13.2 Hz, 1H, methylene), 3.02 (d, J = 13.2 Hz, 1H, methylene), 4.10 (s, 1H, NH), 7.00 (s, 1H, phenyl), 7.32 (d, J = 1.70 Hz, 1H, pyridyl), 7.38 (d, J = 2.9 Hz, 1H, pyridyl), 7.58 (d, J = 2.8 Hz, 1H, pyridyl), 7.64 (d, J = 2.9 Hz, 1H, pyridyl), 7.77 (dd, J = 1.70 Hz, 1H, pyridyl), 7.80 (s, 1H, phenyl), 8.63 (d, J = 1.90 Hz, 1H, pyridyl), 8.84 (d, J = 2.10 Hz, 1H, pyridyl), 8.90 (d, J = 1.70 Hz, 1H, pyridyl); ¹³C NMR δ : 31.52, 37.52, 77.10, 119.56, 123.40, 124.79, 129.51, 130.08, 130.21, 136.06, 136.57, 137.31, 138.53,

 Table 3

 Recyclability studies of [MOEMIM]TFA for the synthesis of compound 4a.

No. of cycles	Yield (%)/time (h)				
0	90/3.0				
1	85/3.0				
2	81/3.0				
3	78/3.5				

138.97, 145.43, 148.33, 148.46, 156.10, 164.67, 168.53; IR (KBr, cm⁻¹) v : 3310, 3050, 2940, 1620. Anal. Calcd for $C_{20}H_{16}N_4Cl_2$: C, 62.64; H, 4.20; N, 14.61. Found : C, 62.66; H, 4.18; N, 14.64.

7-Nitro-2-spiro(2'-chromane)-3",4"-dihydrochromano[2,3-c]-2,3-dihydro-1H-1,5-benzodiazepine (3i). Dark brown solid, mp = 137° C; $R_{\rm f} = 0.47$ (pet.ether - ethyl acetate = 7:3); ¹H NMR δ: 2.62 (d, J = 13.20 Hz, 1H, methylene), 2.68 (t, J = 12.4Hz, 1H, methine), 2.70 (d, J = 13.20 Hz, 1H, methylene), 2.75 (t, J = 12.4 Hz, 2H, methylene), 2.90 (t, J = 13.4 Hz, 2H, methylene), 3.58 (s, 1H, NH), 6.60 (d, J = 2.4 Hz, 1H, cromanyl), 6.84 (dd, J = 2.1 Hz, 2H, chromanyl), 6.87 (dd, J = 1.8 Hz, 2H, cromanyl), 6.89 (d, 1.8 Hz, 1H, cromanyl), 7.07 (t, J = 2.1 Hz, 1H, cromanyl), 7.10 (t, J = 1.8 Hz, 1H, cromanyl), 7.20 (d, J = 2.1 Hz, 1H, phenyl), 7.24 (s, 1H, phenyl), 7.26 (d, J = 2.1 Hz, 1H, phenyl); ¹³C NMR δ : 15.70, 20.20, 20.43, 47.20, 81.40, 113.30, 114.10, 120.90, 122.10, 123.70, 124.10, 125.10, 126.35, 126.65, 127.10, 128.90, 129.10, 129.75, 137.90, 138.90, 147.70, 157.10, 158.90, 164.10; IR (KBr, cm⁻¹) v : 3510, 3405, 2905, 1620. Anal. Calcd for C₂₄H₁₉N₃O₄ : C, 69.71; H, 4.63; N, 10.16. Found : C, 69.74; H, 4.65; N, 10.13.

7-Chloro-2-spiro(2'-indoline)-indolino[2,3-c]-2,3-dihydro-1H-**1,5-benzodiazepine** (3j). Dark brown solid, mp = 158°C; R_f = 0.48 (pet.ether - ethylacetate = 7:3); ¹H NMR δ : 2.60 (s, 1H, methine), 2.68 (d, J = 13.20 Hz, 1H, methylene), 2.80 (d, J = 13.20; 1H, methylene), 3.50 (s, 1H, NH), 3.60 (s, 1H, NH), 3.80 (s, 1H, NH), 6.33 (d, J = 2.10 Hz, 1H, indolinyl), 6.38 (dd, J = 2.2 Hz, 2H, indolinyl), 6.87 (t, J = 2.3 Hz, 1H, indolinyl), 6.89 (t, J = 3.04 Hz, 1H, indolinyl), 6.96 (d, J = 2.0 Hz, 1H, indolinyl), 6.98 (dd, J = 1.8 Hz, 1H, indolinyl), 7.01 (d, J = 1.8 Hz, 1H, indolinyl), 7.33 (d, J = 2.0 Hz, 1H, phenyl), 7.71 (s, 1H, phenyl), 7.74 (d, J = 2.2 Hz, 1H, phenyl); ¹³C NMR δ : 52.10, 53.40, 54.20, 70.20, 72.10, 76.10, 108.20, 109.41, 109.61, 110.19, 112.28, 112.48, 117.30, 118.20, 122.30, 125.20, 127.44, 132.70, 137.36, 143.25, 143.38, 177.09. IR (KBr, cm $^{-1})$ v : 3520, 3410, 2910, 1640. Anal. Calcd for $C_{22}H_{17}N_4Cl$: C, 70.84; H, 4.59; N, 15.03. Found : C, 70.87; H, 4.55; N, 15.05.

2-Spiro[5(3-methyl-1-phenylpyrazoline)]-3"-methyl-1"-phenyl pyrazolino[4,5-c]-2,3-dihydro-1H-1,5-benzodiazepine (3k). Brown solid, mp = 142°C; R_f = 0.46 (pet.ether - ethyl acetate = 7:3); ¹H NMR δ : 0.90 (s, 3H, CH₃), 1.06 (s, 3H, CH₃), 2.10 (s, 1H, methine), 2.60 (s, 2H, methylene), 3.70 (s, 1H, NH), 6.40–6.60 (m, 8H, phenyl), 6.90–7.02 (m, 3H, phenyl), 7.10– 7.18 (m, 3H, phenyl); ¹³C NMR δ : 20.20, 21.50, 34.60, 42.40, 48.30, 54.30, 74.20, 110.90, 112.50, 113.60, 115.20, 116.10, 117.20, 122.20, 125.60, 127.60, 128.20, 129.10, 131.20, 132.80, 136.10 137.10, 141.20, 143.50, 146.70, 156.60; IR (KBr, cm⁻¹) v : 3520, 3400, 2905, 1640. Anal. Calcd for C₂₆H₂₄N₆ : C, 74.25; H, 5.75; N, 19.99. Found : C, 74.28, H, 5.72, N, 19.97.

Synthesis of $2,3,5-\beta$ -*D*-*ribofuranose-1-bromo-2,3,5-tribenzoate*. This has been synthesized by reported method [29].

Synthesis of 2,3-dihydro-1,5-benzodiazepine ribofuranosides (4a-k). After completion of the reaction between OPD and heterocyclic ketone (monitored by TLC), 2,3,5- β -D-ribofuranose-1-bromo-2,3,5-tribenzoate equivalent to 1.1 mole of compound **3** was added to the reaction mixture. The contents were further stirred magnetically, till completion of the reaction (checked by TLC). The ribofuranoside was extracted with ethyl acetate (2 × 15 mL). The solvent was removed by distillation under reduced pressure and the product **4** so obtained was chromatographed over silica gel (60–120 mesh) column by eluting with pet.ether-EtOAc (7:3) to afford pure ribofuranosides.

2,4-Di(2'-furyl)-2-methyl-1-(2",3",5"-tri-o-benzoyl-β-D-ribofuranosyl)-2,3-dihydro-1,5-benzodiazepine (4a). Solid, mp = 146–148°C; $R_f = 0.35$ (pet.ether - ethyl acetate - 8:2); yield 86%; ¹H NMR δ : 1.69 (s, 3H, –CH₃), 2.90 (d, J = 7.2 Hz, 1H, methylene), 3.05 (d, J = 7.2 Hz, 1H, methylene), 4.38 (d, J = 7.4 Hz, 2H, C₅"sugar), 4.89–4.93 (m, 3H, C₂", C₃", and C₄" sugar), 6.60 (d, J = 8.4 Hz, 1H, C₁" sugar), 6.85–7.25 (m, 10H, 4H phenyl and 6H furyl), 7.35–8.15 (m, 15H, OBz); ¹³C NMR δ : 28.40, 39.20, 45.60, 65.75, 68.90, 69.10, 70.0, 86.40, 105.10, 110.21, 112.40, 113.55, 119.25, 122.50, 123.10, 127.60, 128.45, 129.70, 130.25, 132.85, 133.40, 138.08, 164.65, 167.00; IR (KBr, cm⁻¹) ν : 3050, 1750, 1660, 1595. GC-MS : M⁺, 736.

2,4-Di(2'-thiophenyl)-2-methyl-1-(2",3",5"-tri-o-benzoyl-β*p*-ribofuranosyl)-2,3-dihydro-1,5-benzodiazepine (4b). Solid, mp = 142–144°C; $R_{\rm f} = 0.38$ (pet.ether - ethyl acetate = 8:2); yield 90%; ¹H NMR δ : 1.65 (s, 3H, CH₃), 2.85 (d, J = 7.2 Hz, 1H, methylene), 3.0 (d, J = 7.2 1H, methylene), 4.37 (d, J = 7.4 Hz, 2H, C₅" sugar), 4.87–4.92, (m, 3H, C₂", C₃" & C₄" sugar), 6.70 (d, J = 8.4 Hz, 1H, C₁"), 6.75–7.28 (m, 10H, 4H phenyl and 6H thiopenyl), 7.38–8.02 (m, 15H, OBz); ¹³C NMR δ : 28.20, 39.10, 45.40, 65.75, 68.95, 69.10, 70.01, 86.40, 105.08, 110.20, 112.40, 113.50, 119.25, 122.40, 123.00, 127.65, 128.45, 129.70, 130.55, 132.80, 133.45, 138.00, 164.55, 167.00; IR (KBr, cm⁻¹) v : 3040, 1760, 1665, 1590. Anal. Calcd for C₄₄H₃₆N₂O₇S₂ : C, 68.71; H, 4.72; N, 3.64. Found : 68.74; H, 4.75; N, 3.60.

2,4-Di(2'-pyridyl)-2-methyl-1-(2",3",5"-tri-o-benzoyl-β-*p*-ribofuranosyl)-2,3-dihydro-1,5-benzodiazepine (4c). Solid, mp = 134°C; $R_f = 0.36$ (pet.ether - ethylacetate = 8:2); yield 88%; ¹H NMR δ : 1.78 (s, 3H, -CH₃), 2.95 (d, J = 7.4 Hz, 1H, methylene), 3.10 (d, J = 7.4 Hz, 1H, methylene), 4.40 (d, J =7.4 Hz, 2H, C₅" sugar), 4.90–4.95 (m, 3H, C₂", C₃" and C₄" sugar), 6.80 (d, J = 8.4 Hz, 1H, C₁", sugar), 6.95–7.20 (m, 4H, phenyl), 7.35–8.59 (m, 23H, 15H OBz and 8H pyridyl); ¹³C NMR δ : 29.50, 40.20, 46.40, 65.70, 68.90, 69.15, 70.10, 86.45, 113.85, 119.80, 120.75, 123.50, 127.95, 128.40, 128.55, 129.75, 130.50, 132.78, 133.65, 136.10, 139.45, 149.10, 163.48, 164.65, 167.00; IR (KBr, cm⁻¹) v : 3015, 1750, 1635, 1590. Anal. Calcd for C₄₈H₃₈N₄O₇ : C, 72.79; H, 5.05; N 7.38. Found : 72.81; H, 5.02; N, 7.42.

2,4-Di(3'-pyridyl)-2-methyl-1-(2",3",5"-tri-o-benzoyl-β-D-ribofuranosyl)-2,3-dihydro-1,5-benzodiazepine (4d). Solid, mp = 138°C; $R_f = 0.40$ (pet.ether - ethyl acetate = 8:2); yield; 89%; ¹H NMR δ : 1.75 (s, 3H, -CH₃); 2.94 (d, J = 7.4 Hz, 1H, methylene), 3.08 (d, J = 7.4 Hz, 1H, methylene), 4.39 (d, J = 7.4 Hz, 2H, C₅" sugar), 4.89–4.93 (m, 3H, C₂", C₃" & C₄" sugar), 6.78 (d, J = 8.4 Hz, 1H, C₁" sugar), 6.98–7.20 (m, 4H, phenyl), 7.30–8.64 (m, 23H, 15H OBz & 8H pyridyl); ¹³C NMR δ : 29.42, 40.01, 46.25, 65.50, 68.91, 69.10, 70.01, 86.45, 113.85, 119.80, 120.75, 123.44, 127.85, 128.40, 128.55, 129.60, 130.55, 132.74, 133.65, 136.00, 139.45, 149.10, 163.25, 164.55, 167.00; IR (KBr, cm⁻¹) v : 3020, 1745, 1640, 1595, GC-MS; M⁺, 758.

2,4-Di(*4'*-pyridyl)-2-methyl-1-(2", 3", 5"-tri-o-benzoyl-β-D-ribofuranosyl)-2,3-dihydro-1,5-benzodiazepine (4e). Solid, mp = 144°C; $R_f = 0.39$ (pet.ether - ethyl acetate = 8:2); yield 90%; ¹H NMR δ : 1.72 (s, 3H, -CH₃), 2.92 (d, J = 7.2 Hz, 1H, methylene), 3.05 (d, J = 7.2 Hz, 1H, methylene), 4.37 (d, J = 7.4 Hz, 2H, C₅" sugar), 4.87–4.92 (m, 3H, C2", C3", and C4" sugar), 6.82 (d, J = 8.2 Hz, 1H, C₁' sugar), 6.92–7.25 (m, 4H, phenyl), 7.35–8.60 (m, 23H, 15H OBz and 8H pyridyl); ¹³C NMR δ : 29.20, 40.10, 46.15, 65.45, 68.90, 69.10, 70.01, 86.45. 113.80. 119.80, 120.65, 123.32, 127.75, 128.42, 128.65, 129.55, 130.45, 132.60, 133.55, 136.25, 139.35, 149.05, 163.15, 164.20. 167.00; IR (KBr, cm⁻¹) v : 3020, 1745, 1640, 1590. Anal. Calcd for C₄₆H₃₈N₄O₇ : C, 72.79; H, 5.05; N, 7.38. Found : C, 72.81; H, 5.02; N, 7.40.

7-*Chloro-2,4-di*(2'*-pyridyl*)-2-*methyl*-1-(2",3",5"-*tri-o-benzoyl*β-*D*-*ribofuranosyl*)-2,3-*dihydro-1,5-benzodiazepine* (4*f*). Solid, mp = 149°C; $R_f = 0.38$ (pet.ether - ethyl acetate = 8:2); yield 80%; ¹H NMR δ : 1.78 (s, 3H, -CH₃), 2.95 (d, J = 7.2 Hz, 1H, methylene), 3.08 (d, J = 7.2 Hz, 1H, methylene), 4.42 (d, J = 7.4 Hz, 2H, C₅" sugar), 4.89–4.95 (m, 3H, C₂", C₃", and C₄" sugar), 6.80 (d, J = 8.2 Hz, 1H C₁" sugar); 7.02–7.25 (m, 3H, phenyl), 7.40–8.70 (m, 23H, 15H OBz & 8H pyridyl), ¹³C NMR δ : 29.50, 40.25, 46.45, 65.70, 68.92, 69.10, 70.01, 86.45, 117.22, 119.75, 120.90, 124.25, 128.42, 128.85, 129.76, 130.55, 131.72, 132.85, 133.25, 136.45, 139.44, 149.32, 163.55, 164.65, 167.00; IR (KBr, cm⁻¹) v : 3040, 1750, 1620, 1590. Anal. Calcd for $C_{46}H_{37}O_7Cl$: C, 69.63; H, 4.70; N, 7.06. Found : C, 69.65; H, 4.67; N, 7. 09.

7-Nitro-2,4-di(2'-pyridyl)-2-methyl-1-(2",3".5"-tri-o-benzoylβ-*D*-ribofuranosyl)-2,3-dihydro-1,5-benzodiazepine (4g). Solid, mp = 149°C; $R_f = 0.44$ (pet.ether - ethyl acetate = 8:2); yield 78%; ¹H NMR δ : 1.78 (s, 3H, -CH₃), 2.98 (d, J = 7.4 Hz, 1H, methylene), 3.10 (d, J = 7.4 Hz, 1H, methylene), 4.45 (d, J = 8.2 Hz, 2H, C₅" sugar), 4.88–4.96 (m, 3H, C₂", C₃" and C₄" sugar), 6.82 (d, J = 8.4 Hz, 1H, C₁" sugar), 7.10–7.30 (m, 3H, phenyl), 7.38–8.65 (m, 23H, 15H OBz and 8H pyridyl); ¹³C NMR δ : 29.65, 40.32, 46.53, 65.75, 68.92, 69.25, 70.01, 86.45, 118.42, 120.00, 121.25, 124.64, 128.45, 128.88, 129.75, 130.50, 131.92, 132.85, 133.22, 136.45, 139.65, 149.32, 163.65, 164.60, 167.00; IR (KBr, cm⁻¹) v : 3130, 1760, 1640, 1595. Anal. Calcd for C₄₆H₃₇N₄O₉ : C, 68.72; H, 4.64; N, 8.71. Found : C, 68.75; H, 4.67; N 8.68.

7,8-Dichloro-2,4-di(2'-pyridyl)-2-methyl-1-(2",3",5"-tri-o-benzoyl-β-D-ribofuranosyl)-2,3-dihydro-1,5-benzodiazepine (4h). Solid, mp. = 136°C; $R_f = 0.42$ (pet.ether - ethyl acetate = 8:2); yield 75%; ¹H NMR δ : 1.80 (s, 3H, CH₃), 2.98 (d, J = 7.4Hz, 1H, methylene), 3.12 (d, J = 7.4 Hz, 1H, methylene), 4.48 (d, J = 8.2 Hz, 2H, C₅" sugar), 4.88–4.99 (m, 3H, C₂", C₃", and C₄" sugar), 6.85 (d, J = 8.2 Hz, 1H, C₁" sugar), 7.35– 8.75 (m, 25H, 15H OBz, 2H phenyl and 8H pyridyl); ¹³C NMR δ : 29.66, 40.48, 46.65, 65.75, 68.90, 69.25, 70.01, 86.45, 124.22, 124.45, 128.80, 129.75, 130.52 131.95, 132.66, 132.84, 133.25, 136.40, 139.65, 149.35, 163.60, 164.50, 167.00; IR (KBr. cm⁻¹) v : 3090, 1763, 1765, 1625, 1590. Anal. Calcd for C₄₆H₃₆N₄O₇Cl₂ : C, 66.72; H, 4.38; N, 6.77. Found : C, 66.75; H, 4.40, N, 6.75.

7-Nitro-2-spiro(2'-chromane)-3",4"-dihydrochromano[2,3-c]-1-(2"', 3"',5"'-tri-o-benzoyl -β-D-rifuranosyl)-2,3-dihydro-1,5*benzodiazepine* (4*i*). Solid, mp = $152-154^{\circ}$ C; $R_{\rm f} = 0.47$ (pet.ether - ethyl acetate = 8:2); yield 75%; ¹H NMR δ : 2.35 (t, J = 12.4 Hz, 2H, methylene), 2.50 (t, J = 12.4 Hz, 2H,methylene), 2.62 (d, J = 12.2 Hz, 2H, methylene), 2.68 (t, J = 13.20 Hz, 1H, methine), 4.35 (d, J = 7.2 Hz, 2H, C_5''' sugar), 4.78–4.90 (m, 3H, $C_2^{\prime\prime\prime}$, $C_3^{\prime\prime\prime}$, and $C_4^{\prime\prime\prime}$ sugar), 6.78 (d, J = 8.2 Hz, 1H, $C_1^{'''}$ sugar), 6.85–7.30 (m, 11H, 3H phenyl and 8H chromanyl), 7.38–8.20 (m, 15H, OBz); 13 C NMR δ : 25.40, 27.95, 41.90, 45.55, 46.65, 65.72, 68.92, 69.22, 70.00, 86.42, 118.45, 120.42, 120.95, 124.65, 128.42, 128.85, 129.70, 130.55, 131.75, 132.66, 133.25, 136.42, 139.55, 149.32, 163.50, 164.66, 167.00; IR (KBr, cm⁻¹) v : 2920, 1750, 1630, 1595. Anal. Calcd for C₅₀H₃₉N₃O₁₁ : C, 69.99; H, 4.58; N, 4.90. Found : C, 69.72; H, 4.60 N, 4.87.

7-Chloro-2-spiro(2'-indoline)-indolino[2,3-c]-1-(2",3",5"-trio-benzoyl-β-D-ribofuranosyl)-N,N-di(2",3",5"-tri-o-benzoyl-βribofuranosyl)-2,3-dihydro-1,5-benzodiazepine (4j). Solid, mp = 158°C; $R_f = 0.43$ (pet.ether - ethyl acetate = 8:2); yield 77%; ¹H NMR δ : 2.50 (s, 2H, methylene), 2.70 (s, 1H, methine), 4.37 (d, J = 7.4 Hz, 6H, $3 \times C_5$ " sugar) 4.80–4.93 (m, 9H, $3 \times C_2$ ", C_3 ", and C_4 " sugar), 6.80 (d, J = 8.2 Hz, 3H, $3 \times C_1$ " sugar), 6.90–7.25 (m, 11H, 3H phenyl and 8H indolinyl), 7.35–8.40 (m, 45H, $3 \times OBz$); ¹³C NMR δ : 27.95, 45.60, 52.50, 65.70, 68.90, 69.21, 70.01, 86.45, 118.45, 120.22, 124.65, 128.42, 128.85, 129.70, 130.50, 131.75, 132.66, 133.20, 136.45, 139.55, 149.30, 163.45, 165.65, 167.00; IR (KBr, cm⁻¹) v : 2915, 1760, 1620, 1592. Anal. Calcd for $C_{100}H_{77}N_4O_{21}$: C, 71.87; H, 4.64; N, 3.35. Found : C, 71.90; H, 4.62, 3.38.

2-Spiro[5-(3-methyl-1'-phenylpyrazoline)]-3"-methyl-1"-phenylpyrazolino[4,5-c]-1-(2"',3"',5"'-tri-o-benzoyl-β-D-ribofuranosyl) -2,3-dihydro-1,5-benzodiazepine (4k). Solid, mp = 154– 156°C; $R_f = 0.37$ (pet.ether - ethyl acetate = 8:2); yield 85%, ¹H NMR δ : 1.85 (s, 3H, -CH₃), 1.88 (s, 3H, -CH₃), 2.40 (s, 2H, methylene), 2.50 (s, 1H, methine), 4.36 (d, J = 7.2 Hz, 2H, C₅"' sugar), 4.80–4.92 (m, 3H, C₂"', C₃"', and C₄"' sugar), 6.60–7.10 (m, 15H, 14H phenyl, and 1H C₁"' sugar), 7.25– 8.30 (m, 15H, OBz); ¹³C NMR δ : 27.90, 41.45, 45.62, 51.40, 51.65, 65.72, 68.92, 69.20, 70.01, 86.45, 113.50, 119.52, 123.25, 127.62, 128.45, 129.72, 130.55, 132.84, 133.45, 138.00, 162.62, 162.68, 164.65, 170.00; IR (KBr, cm⁻¹) v : 2910, 1760, 1625. Anal. Calcd for C₅₅H₄₄N₆O₇ : C, 72.19; H, 5.13; N, 9.72. Found : C, 72.22; H, 5.15, N, 9.70.

Acknowledgments. We thank Head, Department of Chemistry, University of Rajasthan, Jaipur for providing laboratory facilities. We are also grateful to CDRI, Lucknow for some analytical data. We are also thankful to Prof. R.K. Bansal for valuable suggestions. Financial support to TY from UGC, New Delhi, in the form of meritorious research scholar award is gratefully acknowledged.

REFERENCES AND NOTES

 Randall, L. O.; Kappel, B. In Benzodiazepines; Grattani, S., Mussini, E., Randall, L. O. Eds.; Raven Press: New York, 1973; p 27.
 Schutz, H. Benzodiazepines; Springer: Heildberg, 1982;

Vol.2, p 240.[3] Smalley, R. K. In Comprehensive Organic Chemistry; Barton, D., Ollis, W. D., Eds.; Pergamon Press: Oxford, U.K., 1979;

Vol.4, p 600. [4] Landquist, J. K. In Comprehensive Heterocyclic Chemistry;

[4] Landquist, J. K. in Comprehensive Heterocyclic Chemistry; Katritzky, A. K., Rees, C. W., Eds.; Pergamon Press: Oxford, 1984; Vol.11, p 166, 170.

[5] (a) Atwal, K. S.; Bergey, J. L.; Hedberg, A.; Moreland, S. J
 Med Chem 1987, 30, 635; (b) Braccio, G.; Roma, G.; Vargin, L.;
 Mura, M.; Marongiu, M. E. J Med Chem 2001, 36, 935.

[6] (a) Harris, R. C.; Straley, J. M. U. S. Pat.153,775(1968); (b) Harris, R. C.; Straley, J. M. Chem Abstr 1970, 73, 100054w.

[7] (a) Essaber, M.; Baourd, A.; Hasnaoui, A.; Benharref, A.; Lavergne, J. P. Synth Commun 1998, 28, 4097; (b) Reddy, K. V. V.;

Rao, P. S; Ashok, D. Synth Commun 2000, 30, 1825.

- [8] Reid, W.; Torinus, E. Chem Ber 1959, 92, 2902.
- [9] Stahlofen, P.; Reid, W. Chem Ber 1954, 90, 815.

[10] Herbert, J. A. L.; Suschitzky, H. J Chem Soc Perkin Trans I 1974, 1, 2657.

[11] Jung, D. I.; Choi, T. W.; Kim, Y. Y. I. S.; Park, Y. M.; Lee, Y. G.; Jung, D. H. Synth Commun 1999, 29, 1941.

[12] Marales, R. H.; Bulbarela, A.; Contreas, R. Heterocycles 1986, 24, 135.

[13] Balakrishna, M. S.; Kaboudin, B. Tetrahedron Lett 2001, 42, 1127.

[14] Yadav, J. S.; Reddy, B. V. S.; Kumar, S. P.; Nagaiah, K. Synthesis 2005, 3, 480.

[15] Yadav, J. S.; Reddy, B. V. S.; Satheesh, G.; Srinivasulu, G.; Kanwar, A. C. Arkivoc 2005(III), 221.

[16] Jarikote, D. V., Siddiqui, S. A.; Rajagopal, R.; Daniel, T.; Lahoti, R. J.; Srinivasan, K. V. Tetrahedron Lett 2003, 40, 1835.

[17] Yadav, J. S.; Reddy, B. V. S.; Eshwaraiah, B.; Anuradha, K. Green Chem 2002, 4, 592.

[18] Varala, R.; Ramu, E.; Adapa, S. R. Arkivoc 2006(III), 171 (and the references cited therein).

[19] (a) Mac Cross, M.; Robins, M. J. In Chemistry of Antitumor Agents; Wilman, D. E. V., Ed; Blackie and Son: Glasgow, UK, 1990; p 261; (b) Robins, R. K.Kini, G. D. In Chemistry of Antitumor Agents; Wilman, D. E. V., Ed.; Blackie and Son: Glasgow, UK, 1988, p 11; (c) Robins, R. K.; Revankar, G. In Antiviral Drug Development; De Clercq, E., Walker, R. T., Eds.; Plenum: New York, 1998; p 11; (d) Sanghvi, Y. S.; Cook, P. D. In Nucleosides and Nucleotides as Antitumor and Antiviral Agents; Chu, C. K., Baker, D. C., Eds.; Plenum: New York, 1993; p 311.

[20] Lerman, L. DNA Probes, Application in Genetic and Infectious Disease and Cancer; Cold Spring Harbor Laboratory: Cold Spring Harbor, USA, 1986.

[21] Crooke, S. T.; Lebleu, B. In Antisense Research and Applications; CRC Press: Boca Raton, FL, 1993; p 311.

[22] (a) Uhlmann, A.; Peyman, A. Chem Rev, 1990, 90, 543; (b) Singh, I.; Hecker, W.; Prasad, A. K.; Parmar, V. S.; Seitz, O. Chem Commun 2002, 5004; (c) Wagner, R. W. Nature 1994, 372, 333.

[23] (a) Khodairy, A.; El-sayed, A. M.; Sahah, H.; Abdel-Ghamy, H. Synth Commun 2007, 37, 3245 and references cited therein; (b) Jung, D.; Song, J.; Kim, Y.; Lee, D.; Lee, Y.; Park, Y.; Choi, S.; Hahn, Bull Kor Chem Soc 2007, 28, 1877 and references cited therein.

[24] Singh, G.; Kumar, N.; Yadav, A. K.; Mishra, A. K. Heteroat Chem 2002, 13, 620 and references cited therein.

[25] Liu, B. K.; Way, N.; Wang, N.; Chen, Z. C.; Wu, Q.; Lin, X. F. Bioorganic and Medicinal Chem Lett 2006, 16, 3769.

[26] Kumar, V.; Parmar, V. S.; Malhotra, S. V. Tetrahedron Lett 2007, 48, 9.

[27] Palimaker, S. S.; Siddiqui, S. A.; Daniel, T.; Lahoti, R.; Srinivasan, K. V. J Org Chem 2003, 40, 20.

[28] Bonhote, P.; Dias, A. P., Papageorgiou, N.; Kalyanasundaram, K.; Graetzel, M. Inorg Chem 1996, **35**, 1168.

[29] Prakash, L.; Gupta, A. Boll Chimico Farma 1994, 133, 163.